Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation.
نویسندگان
چکیده
Activation of a water molecule by the electrochemical oxidation of a Mn-aquo complex accompanied by the loss of protons is reported. The sequential (2 × 1 electron/1 proton) and direct (2 electron/2 proton) proton-coupled electrochemical oxidation of a non-porphyrinic six-coordinated Mn(II)OH2 complex into a mononuclear Mn(O) complex is described. The intermediate Mn(III)OH2 and Mn(III)OH complexes are electrochemically prepared and analysed. Complete deprotonation of the coordinated water molecule in the Mn(O) complex is confirmed by electrochemical data while the analysis of EXAFS data reveals a gradual shortening of an Mn-O bond upon oxidation from Mn(II)OH2 to Mn(III)OH and Mn(O). Reactivity experiments, DFT calculations and XANES pre-edge features provide strong evidence that the bonding in Mn(O) is best characterized by a Mn(III)-oxyl description. Such oxyl species could play a crucial role in natural and artificial water splitting reactions. We provide here a synthetic example for such species, obtained by electrochemical activation of a water ligand.
منابع مشابه
Influence of second sphere hydrogen bonding interaction on a manganese(II)-aquo complex.
We have developed a pentadentate N(4)O ligand scaffold with a benzimidazole group placed in a rigid fashion to develop hydrogen bonding interaction with the ligand in the sixth position. The mononuclear Mn(II) complex with a water molecule was isolated and characterized. We discuss the role of the outer sphere ligand in stabilising a Mn(II)-aquo complex.
متن کاملWater oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II.
A dimanganese(II) bis-aquo complex [Mn2(cmep)2(H2O)2](ClO4)2, (cmep = N-carboxymethylN’-methyl-N,N’-bis(2-pyridylmethyl)-1,2-ethandiamine), catalyzes the oxidation of water by butylhydrogenperoxide (TBHP) to dioxygen with many turnovers and without degradation. O isotope labelling shows the reaction is highly specific: One oxygen atom in the product dioxygen is derived from water, the other is ...
متن کاملManganese clusters with relevance to photosystem II.
ion model is not a true H-abstracting process but rather a special case of proton-coupled electron transfer where reduction of YZ by the Mn4 cluster occurs with the proton emanating from solvent water. These two theories will now be described briefly. A hydrogen atom abstraction process by the YZ residue in conjunction with a dimer-of-dimers structural template has led to an interesting hypothe...
متن کاملStudy of Proton Coupled Electron Transfer in a Biomimetic Dimanganese Water Oxidation Catalyst with Terminal Water Ligands.
The oxomanganese complex [H(2)O(terpy)Mn(III)(μ-O)(2)Mn(IV)(terpy)H(2)O](3+) (1, terpy = 2,2':6-2″-terpyridine) is a biomimetic model of the oxygen evolving complex of photosystem II with terminal water ligands. When bound to TiO(2) surfaces, 1 is activated by primary oxidants (e.g., Ce(4+)(aq), or oxone in acetate buffers) to catalyze the oxidation of water yielding O(2) evolution [G. Li et al...
متن کاملUtilization of hydrogen bonds to stabilize M-O(H) units: synthesis and properties of monomeric iron and manganese complexes with terminal oxo and hydroxo ligands.
Non-heme iron and manganese species with terminal oxo ligands are proposed to be key intermediates in a variety of biological and synthetic systems; however, the stabilization of these types of complexes has proven difficult because of the tendency to form oxo-bridged complexes. Described herein are the design, isolation, and properties for a series of mononuclear Fe(III) and Mn(III) complexes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Energy & environmental science
دوره 3 7 شماره
صفحات -
تاریخ انتشار 2010